Automatic facial attribute analysis via adaptive sparse representation of random patches
نویسندگان
چکیده
It is well known that some facial attributes –like soft biometric traits– can increase the performance of traditional biometric systems and help recognition based on human descriptions. In addition, other facial attributes, such as facial expressions, can be used in human–computer interfaces, image retrieval, talking heads and human emotion analysis. This paper addresses the problem of automated recognition of facial attributes by proposing a new general approach called Adaptive Sparse Representation of Random Patches (ASR+). The proposed method consists of two stages: In the learning stage, random patches are extracted from representative face images of each class (e.g., in gender recognition –a two-class problem–, images of females/males) in order to construct representative dictionaries. A stop list is used to remove very common words of the dictionaries. In the testing stage, random test patches of the query image are extracted, and for each non–stopped test patch a dictionary is built concatenating the ‘best’ representative dictionary of each class. Using this adapted dictionary, each non–stopped test patch is classified following the Sparse Representation Classification (SRC) methodology. Finally, the query image is classified by patch voting. Thus, our approach is able to learn a model for each recognition task dealing with a larger degree of variability in ambient lighting, pose, expression, occlusion, face size and distance from the camera. Experiments were carried out on eight face databases in order to recognize facial expression, gender, race, disguise and beard. Results show that ASR+ deals well with unconstrained conditions, outperforming various representative methods in the literature in many complex scenarios.
منابع مشابه
Recognition of Facial Attributes Using Adaptive Sparse Representations of Random Patches
It is well known that some facial attributes –like soft biometric traits– can increase the performance of traditional biometric systems and help recognition based on human descriptions. In addition, other facial attributes –like facial expressions– can be used in human– computer interfaces, image retrieval, talking heads and human emotion analysis. This paper addresses the problem of automated ...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملAdaptive Sparse Coding for Painting Style Analysis
Inspired by the outstanding performance of sparse coding in applications of image denoising, restoration, classification, etc, we propose an adaptive sparse coding method for painting style analysis that is traditionally carried out by art connoisseurs and experts. Significantly improved over previous sparse coding methods, which heavily rely on the comparison of query paintings, our method is ...
متن کاملAn ensemble of patch-based subspaces for makeup-robust face recognition
Recent research has demonstrated the negative impact of makeup on automated face recognition. In this work, we introduce a patch-based ensemble learning method, which uses multiple subspaces generated by sampling patches from before-makeup and after-makeup face images, to address this problem. In the proposed scheme, each face image is tessellated into patches and each patch is represented by a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 68 شماره
صفحات -
تاریخ انتشار 2015